Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Sci Adv ; 9(1): eade8272, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2193383

RESUMEN

Spleen tyrosine kinase (SYK) is a previously unidentified therapeutic target that inhibits neutrophil and macrophage activation in coronavirus disease 2019 (COVID-19). Fostamatinib, a SYK inhibitor, was studied in a phase 2 placebo-controlled randomized clinical trial and was associated with improvements in many secondary end points related to efficacy. Here, we used a multiomic approach to evaluate cellular and soluble immune mediator responses of patients enrolled in this trial. We demonstrated that SYK inhibition was associated with reduced neutrophil activation, increased circulation of mature neutrophils (CD10+CD33-), and decreased circulation of low-density granulocytes and polymorphonuclear myeloid-derived suppressor cells (HLA-DR-CD33+CD11b-). SYK inhibition was also associated with normalization of transcriptional activity in circulating monocytes relative to healthy controls, an increase in frequency of circulating nonclassical and HLA-DRhi classical monocyte populations, and restoration of interferon responses. Together, these data suggest that SYK inhibition may mitigate proinflammatory myeloid cellular and soluble mediator responses thought to contribute to immunopathogenesis of severe COVID-19.


Asunto(s)
COVID-19 , Humanos , Quinasa Syk , Oxazinas/farmacología , Oxazinas/uso terapéutico , Antígenos HLA-DR , Homeostasis
2.
Arthritis Rheumatol ; 72(11): 1806-1808, 2020 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1326752
3.
Cell Death Differ ; 28(11): 3125-3139, 2021 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1241944

RESUMEN

SARS-CoV-2 infection poses a major threat to the lungs and multiple other organs, occasionally causing death. Until effective vaccines are developed to curb the pandemic, it is paramount to define the mechanisms and develop protective therapies to prevent organ dysfunction in patients with COVID-19. Individuals that develop severe manifestations have signs of dysregulated innate and adaptive immune responses. Emerging evidence implicates neutrophils and the disbalance between neutrophil extracellular trap (NET) formation and degradation plays a central role in the pathophysiology of inflammation, coagulopathy, organ damage, and immunothrombosis that characterize severe cases of COVID-19. Here, we discuss the evidence supporting a role for NETs in COVID-19 manifestations and present putative mechanisms, by which NETs promote tissue injury and immunothrombosis. We present therapeutic strategies, which have been successful in the treatment of immunο-inflammatory disorders and which target dysregulated NET formation or degradation, as potential approaches that may benefit patients with severe COVID-19.


Asunto(s)
COVID-19/patología , Trampas Extracelulares/metabolismo , Neutrófilos/inmunología , COVID-19/complicaciones , COVID-19/inmunología , Citrulinación , Activación de Complemento , Humanos , Neutrófilos/metabolismo , Activación Plaquetaria , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad , Trombosis/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA